News

  • 0
  • 0

Scientific News Boron Nitride Graphene Mixture May Be Suitable For Next-Generation Green Cars

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Scientific community has long been fascinated by boron nitride due to its unique properties: sturdy, ultra-thin transparent, insulating and lightweight. The boron is a material that can be used by a wide range of researchers.
Scientists from Rice University have found that a graphene matrix separated by columns made of boron nitride microtubes may be suitable for storing hydrogen in automobiles.

The Department of Energy is setting the standard in storage materials to make hydrogen fuel a practical option for light vehicles. A new computational study by materials scientist Rouzbeh Sharsavari of Rice Lab has determined that pillared Boron Nitride and graphene may be suitable candidates.

Shahsavari's lab determined the elastic and columnar graphene structures by computer simulation, and then processed the boron nanotubes to create a mixture that simulates an unique three-dimensional structural design. (A sample consisting of boron nanotubes that are seamlessly bonded with graphene is prepared.

As the pillars between the floors of a building provide space for people, so do the pillars within the graphene boron-nitride. The goal is to keep them inside and get out as necessary.

The researchers discovered that the pillared graphene and pillared Boron Nitride graphene have a high surface area (about 2.547 square meters/square meter) as well as good recyclability in ambient conditions. Their model shows adding oxygen or lithium will improve the material's ability to combine with hydrogen.

They concentrated their simulations on four different variants: either a graphene pillared with boron or lithium, or a graphene pillared with boron or lithium.

The best graphene at room temperature was oxygen-doped boron oxide skeletons.

The material's hydrogen weight was 14.77% in cold temperatures below -321 Fahrenheit.

Under moderate conditions, US Department of Energy has set a target of storing more than 5.5% of hydrogen by weight and 40 grams of hydrogen per liter. The ultimate target is 7.5% weight and 70 gram per liter.

Shahsavari explained that the hydrogen atoms adsorb on the undoped pillared Boron Nitride Graphene due to a weak van der Waals force. When the material has been doped with oxygen the atoms are strongly bound to the mixture. This produces a surface which is better for hydrogen.

"Because the nature of charge and interaction, adding oxygen to the substratum gives us a strong bond," said he. "Oxygen, and hydrogen have been known to share a strong chemical affinity."

Shahsavari explained that the boron nitride polarization properties combined with the graphene electron mobility make the material highly adaptable in application.

Shahsavari explains that "we are looking for the best point" which is a description of ideal conditions such as the balance between weight and surface area, operating temperature, and pressure. This is only possible through computational modeling. We can test many different changes very quickly. In just a couple of days, the experimenter is able to finish the work that would normally take months.

He said these structures are strong enough to easily surpass the requirements of Department of Energy. The hydrogen fuel tank, for example, can withstand up to 1,500 charging and discharging cycles.

Tech Co., Ltd., a professional boron manufacturer, has over 12 years of experience in the chemical products research and design. Contact us if you need high-quality boron nitride. Send a request .

Inquiry us

High Purity 3D Printing Nickel Alloy IN718 Powder

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Vanadium Boride VB2 Powder CAS 12007-37-3, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Titanium Nitride TiN Powder CAS 25583-20-4, 99.5%

Supply Magnesium Granules Mg Granules 99.95%

Our Latest Products

High Purity 3D Printing Nickel Alloy IN718 Powder

In718 Powder is widely used for industrial and aviation turbo-propellers, petrochemical, nuclear reactors, and other fields.Particle Size: 15-45mm; 15-53mm; 53-120mm and 53-150mm 3D Printing Nickel Alloy Inconel 718 Properties: Nickel Alloy IN71…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It has a high solubility level in water. It's also easily soluble when heated alkali is used.Particle size : 100mesh Purity: 99.99% About Germanium Sulfide (GeS2)…